Modeling biofilm growth for porous media applications
نویسندگان
چکیده
منابع مشابه
Three-Dimensional Simulations of Biofilm Growth in Porous Media
Biofilm growth occurs in a variety of random porous media in a range of industrial processes; prediction of its growth and subsequent influence on hydrodynamics is hence desirable. In this study, we present the first numerical 3D pore-scale model of biofilm growth in porous media, based on a lattice Boltzmann simulation platform complemented with an individual-based biofilm model (IbM). We use ...
متن کاملBiofilm growth in porous media: experiments, computational modeling at the porescale, and upscaling
Biofilm growth changes many physical properties of porous media such as porosity, permeability and mass transport parameters. The growth depends on various environmental conditions, and in particular, on flow rates. Modeling the evolution of such properties is difficult both at the porescale where the phase morphology can be distinguished, as well as during upscaling to the corescale effective ...
متن کاملMultiblock Modeling of Flow in Porous Media and Applications
We investigate modeling flow in porous media in multiblock domain. Mixed finite element methods are used for subdomain discretizations. Physically meaningful boundary conditions are imposed on the non-matching interfaces via mortar finite element spaces. We investigate the pollution effect of nonmatching grids error on the numerical solution away from interfaces. We prove that most of the error...
متن کاملImaging biofilm in porous media using X-ray computed microtomography.
In this study, a new technique for three-dimensional imaging of biofilm within porous media using X-ray computed microtomography is presented. Due to the similarity in X-ray absorption coefficients for the porous media (plastic), biofilm and aqueous phase, an X-ray contrast agent is required to image biofilm within the experimental matrix using X-ray computed tomography. The presented technique...
متن کاملRetention of a model pathogen in a porous media biofilm.
The inadvertent or the deliberate introduction of pathogens into drinking water can lead to public health consequences. Distribution system sampling strategies are needed to provide information on the identity, source and fate of the introduced pathogens. Porous media biofilm reactors conditioned with undefined drinking water biofilms were tested for their ability to immobilize Escherichia coli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2001
ISSN: 0895-7177
DOI: 10.1016/s0895-7177(00)00246-6